Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Structure and Curriculum of Two Year Post Graduation Degree

Undergraduate Programme of Science and Technology

M.Sc. Chemistry

Board of Studies

In

Chemistry

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

w.e.f. June, 2023

(In Accordance with NEP-2020)

Review Statement

The NEP Cell reviewed the Curriculum of **M.Sc.** (**Research /Degree**) in **Chemistry** Programme to be effective from the **Academic Year 2023-24.** It was found that, the structure is as per the NEP-2020 guidelines of Govt. of Maharashtra.

Date: 09/08/2023

Place: Latur

NEP Cell

Rajarshi Shahu Mahavidyalaya, Latur
(Autonomous)

CERTIFICATE

I hereby certify that the documents attached are the Bonafide copies of the Curriculum of M.Sc Chemistry Programme to be effective from the Academic Year 2023-24.

Date:

Place: Latur

Prof. Dhananjay Palke

Chairperson
Board of Studies in Chemistry
Rajarshi Shahu Mahavidyalaya, Latur
(Autonomous)

१। आरोह तपसो ज्योतिः।। Rajarshi Shahu Mahavidyalaya,

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Members of Board of Studies in the Subject Chemistry Under the Faculty of Science and Technology

Sr.	Name	Designation	In position
No.	D CDI I D II	CI.:	_
1	Prof. Dhananjay Palke	Chairperson	HoD
	Head, Department of Chemistry,		
2	Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Prof. Vijay Bhosale	Member	V.C. Nominee
4	Department of Chemistry,	Wiember	v.C. Nominee
	Yeshwant Mahavidyalaya, Nanded.		
	Mo.No.9403067252		
3	Prof. S. P. Hangiragekar Department of Chemistry,	Member	Academic Council
J	Shivaji University, Kolhapur Mo.No.9890363931	Wichioci	Nominee
4	Dr. Bapu B. Shingate	Member	Academic Council
7	Department of Chemistry,	Member	Nominee
	Dr. B. A. M. U. Aurangabad Mo.No.9850298591		Nonmice
5	Prof. S. B. Patwari	Member	Expert from outside for
	Chemistry, Laal Bhadur Shastri,	Wichioci	Special Course
	Mahavidyalaya, Dharmabad Mo.No.9067583746		Special Course
6	Dr. Pinak M. Chincholkar	Member	Expert from Industry
ŭ	Springer Nature Technology & Samp;		
	Publishing Solutions. Tower 8 and 9		
	Magarpatta City, Hadapsar. Pune.		
	Mo.No.9823966381		
7	Dr. R. V. Hangarge	Member	P.G. Alumni
	Department of Chemistry,	SARIUE.	-
	Tai Golwalkar Mahavidyalaya, Ramtek.	074(1	
	Mo. No. 9075641697	III Jijas	TT
8	Dr. K. I. Momin	Member	Faculty Member
	Assistant Professor,	5	
	Rajarshi Shahu Mahavidyalaya (Autonomous), Latur		
9	Dr. K. C. Tayade	Member	Faculty Member
	Assistant Professor,	1166	
	Rajarshi Shahu Mahavidyalaya (Autonomous), Latur		
10	Mr. M. S. Sudewad	Member	Faculty Member
	Assistant Professor,	luyalay	Cd y
	Rajarshi Shahu Mahavidyalaya (Autonomous), Latur	(21)	
11	Dr. K. D. Sawant	Member	Member from same
	Department of Botany,		Faculty
	Rajarshi Shahu Mahavidyalaya,		
	(Autonomous) Latur 413512		

From the Desk of the Chairperson...

The Department of Chemistry was established in the academic year 1971-72. Need of Chemist, is at the forefront of the noteworthy growth in industries, the college took initiative in starting the B.Sc. Chemistry Program from 1971-72 at Undergraduate (B.Sc.) level. Now, this course is successfully flourishing the need of industries by availing Chemist with sound subject knowledge. Also, Post graduate Program in Chemistry started from Academic Year 2014-2015. From Academic Year 2023-24 we are implementing National Education Policy-2020 (NEP-2020) & Started B.Sc. (Honors/Research) Chemistry Programme to be effective from the same academic year. Department has well equipped laboratories with number of sophisticated instruments. In 2006-07, UGC recognized this department as a "Star Department" in the college and awarded CPE status.

The B.Sc. Chemistry Programme is designed to give sound knowledge and understanding of Chemistry to undergraduate students of the B.Sc. Degree course. The goal of the Programme is to make the study of Chemistry as stimulating, interesting, and relevant as possible. The curriculum is prepared with the aim of making the students capable of studying Chemistry in academic and industrial courses. Also, to expose the students to Chemistry and build up their interest in various fields of chemistry. The new and updated Curriculum is based on National Education Policy-2020 (NEP-2020) Guidelines which includes multiple entries & multiple Exit & interdisciplinary approach with vigor and depth. The curriculum is designed on the basis of Feedbacks & suggestion given by Various Stakeholders and by considering the syllabi of Competitive examination like, IIT-JAM, NET, SET, GATE examinations, UGC model curriculum, syllabi of different entrance examinations and syllabi of other Universities.

Our Vision to evolve as a world class dynamic center of higher education disseminating knowledge rigorously at affordable cost and to emerge as a premier centre that promotes technological competence and democratic values.

- * "Pursuit of Excellence" in higher education to make our students globally competent.
- * Enable students to develop as responsible citizens with human values.
- * Provide value and need based education.
- * Develop scientific attitude among students.

Prof. Dhananjay Palke

Chairperson

Board of Studies in Chemistry Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Bu well bur are one of the second of the sec

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Index

Sr. No.	Content	Page No.
1	Structure of Two-Year Degree Programme	1
2	Abbreviations	2
3	Courses and Credits	3
4	Programme Outcomes (POs) for M.Sc. Programme	4
5	Programme Specific Outcomes (PSOs) for M.Sc. Physics	5
6	Curriculum: Semester-I	6
7	MMC-I: Inorganic Chemistry - I	7
8	Lab Course –I (Based on MMC-I)	10
9	MMC-II : Organic Chemistry - II	11
10	Lab Course –II (Based on MMC-II)	15
11	MMC-III : Physical Chemistry	17
12	Lab Course –III (Based on MMC-III)	21
13	MEC-I (A): Physical Methods in Chemistry OR	24
	MEC-I(B): Basic Conc <mark>epts</mark> of Polymer Chemistry	27
14	Lab Course –IV [Based on MEC-I (A) or MEC – I (B)]	29
15	RMC : Research Methodology	31
16	Curriculum: Semester-II	34
17	MMC-IV : Inorganic Chemistry - II	35
18	Lab Course –V (Based on MMC-IV)	38
19	MMC-V: Organic Chemistry – II	39
20	Lab Course –VI (Based on MMC-V)	42
21	MMC-VI: Physical Chemistry	44
22	Lab Course –VII (Based on MMC-VI)	47
23	MEC-II (A): Ph <mark>ysical M</mark> ethods i <mark>n Chem</mark> istry – II OR	49
	MEC-II (B): Molecular Spectroscopy & Computer Application - II	52
24	Lab Course –VIII [Based on MEC-II (A) or MEC – II (B)]	55
25	Field Project	
26	Extra Credit Activities	58
27	Examination Framework	60

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur

PG Skeleton in Accordance with NEP 2020 Structure for Two Year M.Sc. Chemistry

Year	Sem	MMC	,	Lab	RM	OJT/FP	RP	Cum.	Marks	Degree
Level		24-28 (22-26)	per Sem	Course				Cr		
		46-56 for tw	o years							
		Mandatory	Elective		RMC	NA	NA	20Cr	Theory:	
	I	MMC I 3Cr	MEC I	LC-I 1Cr	4Cr				1Cr=25M	
		MMC II 3Cr	3Cr	LC-II 1Cr	F				Lab	
		MMC III 3Cr		LC-III 1Cr					Course:	D.C.
				LC-IV 1Cr	\				1Cr=50M	PG
	II	MMC IV 3Cr	MEC II	LC-V 1Cr	NA	OJT-I	NA	20Cr		Diploma (After
I		MMC V 3Cr	3Cr	LC-VI 1Cr		4Cr				03 Year
6.0		MMC VI 3Cr		LC-VII		/FPI				B.Sc.
				1Cr		4Cr			OJT/FP:	
				LC-VIII					1Cr=25M	Degree)
				1Cr						
	T-4-1	MMC	MEC	I C OC	RMC	OJT/FP	NIA	40.C		
	Total	18Cr	06Cr	LC-8Cr	04Cr	04Cr	NA	40Cr		
	•	Exit Option	on: PG D <mark>i</mark> p	loma with 40	Credits	s After 03	Year B.S	Sc. Degre	e	•
	III	MMC VII 3Cr	MEC	LC-IX 1Cr	NA	NA	RP-I	20 Cr		
		MMC VIII	III	LC-X 1Cr			4Cr			
		3Cr	3Cr	LC-XI 1Cr						
		MMC IX 3Cr		LC-XII				- 1		
				1Cr						
	IV	MMC X 3Cr	MEC	LC-XIII	NA	NA	RP-II	22Cr	RPI &	PG
		MMC XI 3Cr	IV	1Cr			6Cr		RPII:	Degree
II		MMC XII 3Cr	3Cr	LC-XIV	150			0	1Cr=25M	(After
6.5			\	1Cr	16	19 छ	34			03 Year
				LC-XV	50	TOTTT	-	OTT		UG
				1Cr	1 0	1917	444	41		Degree)
				LC-XVI	07	THY				
				1Cr		6				
	Total	MMC 18Cr	MEC	LC-8Cr	NA	NA	RP	42Cr		
		1	06Cr	i redere	221		10			
			LINEAL PROPERTY.	46 m			Cr			
Cum.		MMC	MEC	LC-16Cr	RMC	OJT/FP	RP	40+42		82
of I &	II	36Cr	12Cr	Shahu	04Cr	04Cr	10Cr	=82		Credits
Year			1 24	or I And		manie	1.	Cr		
			Lal	ur (Au	OHO	mous	>)			
		Exit Option: T	wo Years	04 Sem. PG I	egree w	ith 82 Cre	dits Aft	er 03 Yea	ar UG Degre	ee

Abbreviations:

1. MMC : Major Mandatory Course

2. MEC : Major Elective Course

3. RMC : Research Methodology Course

4. OJT : On Job Training (Internship/Apprenticeship)

5. FP : Field Project

6. RP : Research Project

7. Cum. Cr : Cumulative Credit

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry

M.Sc. Botany Skeleton in Accordance with NEP-2020

Illustrative Credit Distribution Structure for Two Years/One Year PG (M.Sc.)

Year &					
Level	Semester	Course Code	Course Title	Credits	No. of Hrs.
		601CHE1101	Inorganic Chemistry - I	03	45
		(MMC I)			
			L <mark>ab Cour</mark> se-I	01	30
		601CHE1102	O <mark>rganic Ch</mark> emistry - II	03	45
		(MMC II)	Lab Course-II	01	30
		601CHE1103	Physical Chemistry	03	45
	Ι	(MMCIII)	Lab Course-III	01	30
		601CHE1201	Physical Methods in Chemistry	03	45
		MEC-I (A)	OR		
		Or	Basic Concepts of Polymer Chem		
		MEC-I(B)	Lab Course-IV	01	30
		601CHE1301	Research Methodology Course	04	100
		(RMC)		7	
		Tota	al Credits	20	
I	4	601CHE2101	Inorganic Chemistry-II	03	45
6.0		(MMC IV)	Lab Course-V	01	30
		601CHE2102	Organic Chemistry-II	03	45
		(MMCV)	Lab Course-VI	01	30
		601CHE2103	Physical Chemistry-II	03	45
		(MMC VI)	Lab Course-VII	01	30
		MEC-I (A)	Physical Methods in Chemistry-II	03	45
	II	Or	OR OR		
		MEC-I(B)	Molecular Spectroscopy & Comp.		
		11-1	Application		
		। । आरा	Lab Course-VIII	01	30
		OJT-I/Field	OJT/ Field Project	04	120
	Ra	Project (FP)	lanu Manavidyala	ya.	
		601CHE2401	(Autonomous)		
		Latur	al Credits	20	
	To	otal Credits (Sem		=-	40
	10		10		

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Faculty of Science & Technology

PO 1.	Academic Competence
	Possess in-depth knowledge in Chemistry and allied subjects.
PO 2.	Scientific Outlook
	Acquire a thorough knowledge about basic theoretical concepts and experimental aspects of
	Chemistry to identify, formulate, investigate and analyze the scientific problems.
PO 3.	Personal and Professional Competence
	Basic competence, systematic and coherent understanding of fundamental concepts in
	chemistry and related fields.
PO 4.	Entrepreneurial Competence:
	An opportunity to contribute effectively in the laboratory, field, and professional
	environments and also to grab an employment.
	Competency to establish independent startup/innovation center etc.
PO 5.	Research Competence
	Foster research and analytical skills in basic and applied research with the ability to
	undertake multidisciplinary and transdisciplinary research.

शिव छत्रपती

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Progr	ramme Specific Outcomes (PSOs) for M.Sc. Chemistry (Honors/Research)			
PSO No.	Upon completion of this programme the students will be able to			
PSO 1	Have firm foundations in the fundamentals and application of current chemical and			
	scientific theories.			
PSO 2	integrate their knowledge from each of these areas with critical thinking skills in order			
	to become problem solvers			
PSO 3	Be proficient in the chemistry laboratory, especially with respect to the abilities to			
	follow and understand general laboratory practice guidelines, including safety.			
	Perform qualitative & Quantitative chemical analyses. Perform chemical synthesis &			
	Understand and use modern chemical instrumentation.			
PSO 4	Find gainful employment in industry or government, be accepted at graduate or			
	professional schools (law, medicine, etc.), or find employment in school systems as			
	instructors or administrators.			
PSO 5	Demonstrate a systematic or coherent understanding of the fundamental concepts,			
	principles and processes underlying the academic field of chemistry, its different			
	subfields (analytical, inorganic, organic and physical), and its linkages with related			
	disciplinary areas/subjects;			
PSO 6	Demonstrate a procedural knowledge that creates different types of professionals in			
	the field of chemistry and related fields such as pharmaceuticals, chemical industry,			
	teaching, research, environmental monitoring, product quality, consumer goods			
	industry, food products, cosmetics industry, etc.;			
PSO 7	Demonstrate a skills related to specialisation areas within chemistry as well as within			
	subfields of chemistry (analytical, inorganic, organic and physical), and other related			
	fields of study, including broader interdisciplinary subfields (life, environmental and			
	material sciences).			
PSO 8	Apply appropriate methodologies in order to conduct chemical syntheses, analyses or			
	other chemical investigations; and apply relevant knowledge and skills to seek			
	solutions to problems that emerge from the subfields of chemistry as well as from			
	broader interdisciplinary subfields relating to chemistry;			
PSO 9	Use chemical techniques relevant to academia and industry, generic skills and global			
	competencies, including knowledge and skills that enable students to undertake			
	further studies in the field of chemistry or a related field, and work in the chemical			
700.10	and nonchemical industry sectors.			
PSO 10	Undertake hands on lab work and practical activities which develop problem solving			
	abilities required for successful career in pharmaceuticals, chemical industry,			
	teaching, research, environmental monitoring, product quality, consumer goods			
	industry, food products, cosmetics industry, etc.			

Semester - I

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Shiv Chhatrapati Shikshan Sanstha's Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry

Course Type: MMC-I

Course Title: Inorganic Chemistry-I

Course Code: 601CHE1101

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

LO 1. To study inorganic reaction mechanisms, SN¹ reaction, SN² reaction, inner and outer sphere electron transfer reactions.

- LO 2. To understand the theories of Trans effect, Substitution reactions in square planar complexes.
- LO 3. To know Term symbols, microstates, Correlation diagram, Orgel diagram.
- LO 4. To study magnetic properties of complexes, Spin free and spin paired equilibria.

Course Outcomes:

After completion of course the student will be able to-

- CO 1. Understand inorganic reaction mechanisms, inner and outer sphere election transfer reactions.
- CO 2. Apply Trans effect rule in preparation of square planar complex.
- CO 3. Calculate different term symbols, microstates of metal ions.
- CO 4. Gain the concepts of magnetic nature of different substance.

Unit No.	Title of Unit & Contents	Hrs.
I	Inorganic Reaction Mechanism – I	12
	1. Rate of reaction, factors affecting the rate of reactions.	
	2. Definition of stability constant, stepwise and overall formation	
	constant.	
	3 Factors affecting the stability of metal complexes with reference to the	
	nature of metal ion and ligand.	
	4. Labile and inert complexes, VBT explanation of liability and inertness.	
	5. Ligand substitution reactions, Acid hydrolysis, factors affecting the	
	acid hydrolysis in octahedral complexes.	
	6. SN1 reaction – Introduction, characteristics, explanation with example	
	using energy profile diagram and mechanism (Dissociative	

Unit No.	Title of Unit & Contents	Hrs.	
	mechanism).		
	7. SN2 reaction – Introduction, characteristics, explanation with example		
	using energy profile diagram and mechanism (Associative		
	mechanism)		
	8. SN¹CB reaction – Introduction, characteristics, explanation with		
	example using mechanism		
	9. Redox reactions (Electron Transfer Reactions) – Introduction,		
	explanation with example, Inn <mark>er and</mark> outer sphere election transfer		
	reactions with mechanism, characteristics, essential requisites, factors		
	which favor the outer and In <mark>ner sphe</mark> re electron transfer reactions.		
	Unit Outcomes:		
	UO 1. Write different types of inorganic reactions and their mechanism.		
	UO 2. Define Inert and Labile complex on the basis of VBT.		
II	Inorganic Reaction Mechanism – II	11	
	1. Substitution reactions in square planar complexes. Trans effect, Trans		
	directing series		
	2. Theories of Trans effect – Polarization theory, Pi bonding theory,		
	evidence in favour of trans effect theories, Defects of these theories		
	3. Application of trans effect in the synthesis of some square planar		
	complexes with suitable example		
	Unit Outcome:		
	UO 1. Discuss the role of Trans effect in Substitution Reaction of		
	Squar <mark>e planar C</mark> omplexes.		
	UO 2. Define theories of Trans effect.		
III	Spectral properties of metal complexes:	11	
	1. Introduction		
	2. Spectrochemical and nephlauxetic series		
	3. Charge transfer – classification, mechanism and interpretation with		
	suitable example, Luminescence spectra		
	4. Term symbol, Rules for determining the ground state term symbol for		
	dn configuration according to L-S coupling		
	5. Microstates – Calculation of number of microstates		
	6. Correlation diagram of d1 and d9, d8 in octahedral and tetrahedral field		
	7. Orgel diagram of d1 to d9 configuration of an octahedral and tetrahedral		
	environment		

Unit No.	Title of Unit & Contents	Hrs.
	8. Tanabe – Sugano diagram of d2 and d3 configuration of an octahedral	
	field	
	9. Racah parameter – calculation of Dq, β and B (Numericals).	
	Unit Outcomes:	
	UO 1. Calculate the no. of Microstate for various configurations	
	UO 2. Draw & explain Orgel diagram of d1 to d9 configuration of an	
	octahedral and tetrahedral complexes	
IV	Magnetic Properties of metal complexes:	11
	1. Origin of magnetism, Types of magnetism, Curie Law, Curie-Weiss	
	Law	
	2. Magnetic properties of complexes – paramagnetism, 1st and 2nd	
	ordered Zeeman effect, Quenching of orbital angular momentum by	
	ligand field	
	3. Magnetic properties of A, E and T ground state terms in complexes	
	4. Spin free and spin <mark>paire</mark> d equi <mark>llibria</mark>	
	5. Spin cross over	
	Unit Outcomes:	
	UO 1. Determine Magnetic Susceptibility of complexes.	
	UO 2. Derive Ground state Term symbol for Various Configurations.	

Learning Resources:

- 1. Puri, Sharma, Kalia Text Book Of Inorganic Chemistry, Milestone Publications-
- 2. W.L. Jolly, Modern Inorganic Chemistry (Mc Graw Hill Book company
- 3. J.E. Huheey, E.A. Keiter, R.L. Keiter Inorganic Chemistry By Pearson
- 4. Gurudeep Raj, Chatwal Anand Advanced Inorganic Chemistry Goel Pub., 1974
- 5. Satyaprakash, G.D. Tuli, S.K. Basu, R.D.Madan, Advanced Inorganic Chemistry, S chand pulicatioin
- 6. Wilkinson and Cotton, Inorganic Chemistry, Wiley; Third edition
- 7. J. D. Lee: Fifth Edition, Concise Inorganic Chemistry, Wiley, 2008.
- 8. Bodie Douglas and DarlMcdaniel: Concepts and Models of Inorganic Chemistry, Third Edition, Wiley, 1983.
- 9. Duward Shriver, P. W. Atkins: Inorganic Chemistry, Fifth Edition, Oxford University Press 2002

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry

Course Type: MMC-I

Course Title: Lab. Course-I (Based on MMC-I)

Course Code: 601CHE1104

Credits: 01 Max. Marks: 50 Lectures: 30 Hrs.

Learning Objectives:

LO 1. To learn about separation and estimation of binary and ternary mixture solutions.

LO 2. To understand about volumetric and gravimetric analysis of ions in binary and ternary mixture solutions.

Course Outcomes:

After completion of course the student will be able to-

- CO 1. Separate binary and ternary mixture.
- CO 2. Estimate the amount of ions by volumetric and gravimetric methods of analysis in binary and ternary mixture solutions.

I	Practicals	30 Hrs
	1. Separation and estimation of metal ions from the following binary mixture	
	solutions.	
	one volumetrically and the other gravimetrically.(Any Four)	
	i) Copper – Ni <mark>ckel ii)</mark> Coppe <mark>r – Iron</mark>	
	iii) Nickel – Zinc iv) Iron – Magnesium	
	v) Copper – Barium vi) Iron – Aluminium	
	2. Separation and estimation of metal ions from the following ternary mixture	
	solution by volumetrically and second gravimetrically. (Any Three)	
	i) Copper Nickel – Zinc ii)Copper–Nickel – Magnesium	
	iii) Iron – Nickel Zinc iv) Silver – Nickel – Magnesium	
	v) Silver-copper-Zinc	

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry

Course Type: MMC-II

Course Title: Organic Chemistry-II

Course Code: 601CHE1102

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives

LO 1. To clarify the concepts and principles of organic chemistry, types of mechanism, types of reactions, the Hammett equation etc.

- LO 2. To clear the concept of aromaticity of different non-benzenoid compounds, alternant and non alternant hydrocarbons, ferrocene, etc
- LO 3. Enable students to outline mechanism of Aliphatic, Nucleophilic and Aromatic substitutions reactions.
- LO 4. To explain the Electrophilic and Nucleophilic addition reaction to carbon carbon multiple bond and carbon–hetero atom multiple bond reactions.

Course outcomes

After completion of course the student will be able to-

- CO 1. Understand concept of organic chemistry, different reaction mechanisms
- CO 2. Identify aromatic, anti-aromatic and non aromatic compounds well.
- CO 3. Able to outline the mechanisms for Aliphatic, Nucleophilic and Aromatic substitutions reactions
- CO 4. Able to outline the mechanisms for Electrophilic and Nucleophilic addition reactions

Unit No.	Title of Unit & Contents	Hrs.
I	Reaction Mechanism: Structure and Reactivity:	11
	1. Types of mechanism, types of reactions, Types of reagent,	
	Thermodynamic and kinetic requirements, Kinetic and	
	thermodynamic control, Hammond's postulate, Potential energy	
	diagrams, Transition state and intermediates.	
	2. Effect of structure on reactivity-resonance and field effect, steric	
	effect, Quantitative treatment. The Hammett equation and linear	
	free energy relationship, Substituents and reaction constants.	

Unit No.	Title of Unit & Contents	Hrs.	
	3. Delocalised chemical bonding-conjugation, Cross-conjugation,		
	Resonance, Hyperconjugation and Tautomerism.		
	4. Generation, Structure and stability of carbocation, carbanion, free		
	radical, carbenes, nitrenes and arynes, strength of acids and bases.		
	Unit Outcome:		
	UO 1. Clarify the concepts and principles of organic chemistry.		
	UO 2. Identify the different intermediate form during reactions.		
II	Aromaticity of Benzenoid and Non- Benzenoid Compounds:	12	
	1. Introduction: Concept of aromaticity, Definition,		
	2. Theories of aromaticity: i) Molecular Orbital Theory, ii)		
	Resonance Theory. Huckel's (4n+2)π electron rule of aromaticity,		
	3. Aromaticity in benzenoids compound, alternant and non alternant		
	hydrocarbons		
	4. Aromaticity in non-benzenoid compounds, annulenes and hetero		
	annulenes, fullerenes C60, tropane, tropoline, azulene, fulvene,		
	tropylium salts, ferrocene.		
	5. Concept of anti-aromaticity.		
	Unit Outcome:		
	UO 1. Explain the concept of aromaticity.		
	UO 2. Identify and differentiate the aromatic, antiaromatic and non		
	aromatic Compounds.		
III	Substitution Reactions:	11	
	1. Nucleophilic Substitution:		
	A. Aliphatic nucleophilic substitution:		
	a. The SN ² , SN ¹ , mixed SN ² & SN ¹ and SET mechanism, the		
	neighbouring group participation by $\pi \& \sigma$ -bonds, Anchimeric		
	assistance. The SN1 mechanism.		
	b. Nucleophilic substitutions at an allylic, aliphatic and a vinylic		
	carbon. Shahu Wahay dyalaya		
	c. Reactivity: Effects of substrate structure, attacking nucleophile,		
	leaving group and reaction medium.		
	2. Aromatic nucleophilic substitution:		
	3. SNAr, SN ¹ , Benzyne and SNR1 mechanism. Reactivity: Effect of		
	substrate, leaving group and attacking nucleophile.		

Unit No.	Title of Unit & Contents	Hrs.
	2. Electrophilic Substitution:	
	a. Aliphatic Electrophilic Substitution.	
	b. Bimolecular mechanism –SE ² and SE ³ . The SE ¹ mechanism,	
	c. Electrophilic substitution accompanied by double bond shift.	
	d. Effect of substrate, leaving group and the solvent polarity on the	
	reactivity.	
	e. Aromatic Electrophilic Substitution:	
	f. The arenium ion mechanism.	
	g. Orientation and reactivity.	
	h. Energy profile diagrams.	
	i. The ortho/para ratio. Ipso att <mark>ack,</mark>	
	j. Vilsmeir reaction,	
	Unit Outcomes:	
	UO 1. Describe mechanisms for Electrophilic and Nucleophilic	
	substitution.	
	UO 2. Predict the effect of nucleophile, leaving group, and solvent on	
	the relative rates.	
IV	Addition Reactions:	11
	 A. Addition to Carbon – Carbon Multiple Bond Mechanistic and stereochemical aspects of addition reactions involving electrophiles, nucleophiles and free radicals. Regioselectivity and chemoselectivity, orientation and reactivity. Addition to cyclopropene ring. B. Addition to Carbon – Hetero Multiple Bond Mechanism of metal hydride reduction of saturated and unsaturated carbonyl compounds acids, esters and nitriles. Addition of Grignard's reagent Organo – zinc and organo-Lithium reagent to carbonyl and unsaturated carbonyl compounds. Mannich reaction with mechanism. Unit Outcomes: 	
	UO 1. Explain the Electrophilic and Nucleophilic addition reaction to	
	carbon – carbon multiple bond.	
	UO 2. Explain the Electrophilic and Nucleophilic addition reaction to	
	carbon–hetero atom multiple bond reactions	

Learning Resources:

- 1 Advanced Organic Chemistry-Reaction Mechanism and structure, Jerry March, John Wiley.
- 2 Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3 A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman.
- 4 Structure and Mechanism in Organic Chemistry, C.K. Ingold, Cornell University Press.
- 5 Organic Chemistry, R. T. Morrison Boyd, Prentice-Hall.
- 6 Modern Organic Reactions, H. O. House, Benjamin.
- 7 Principles of organic Synthesis, R.O.C. Norman and J.M. Coxon, Blackie Academic and Professional.
- 8 Reaction Mechanism in Organic Chemistry, S.M. Mukharji and S.P. Sing, Macmillan.
- 9 Organic Chemistry, Second Edition, Jonathan Clayden, Nick Greeves and Stuart Warren.
- 10 Organic Reaction Mechanism, Sanyal Taneja.
- Organic Reaction Mechanism, V. K. Ahluwalia, Rakesh Kumar and Parashar.

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry

Course Type: MMC-II

Course Title: Lab Course -II (Based on MMC-II)

Course Code: 601CHE1105

Credits: 01 Max. Marks: 50 Hours: 30

Learning Objectives

LO 1. Studying experimental process of separation of the given organic binary mixture by physical method.

- LO 2. Understanding the organic synthesis by single stage preparation of organic compounds.
- LO 3. Studying experimental techniques such as simple distillation and thin layer chromatography for the purification and analysis of given organic compounds.

Course outcomes

After completion of course the student will be able to

- CO 1. Separate the given organic binary mixture by physical method.
- CO 2. Synthesize organic compounds by single stage preparation method.
- CO 3. Carry out various techniques for the purification and analysis of given organic compounds.

Practical No.	Unit
1	I) Techniques
	1 Simple Distillation.
	2 Thin layer Chromatography.
	लात्र
2	II) Qualitative Analysis: Separation, purification, sample submission and
	identification of compounds of binary mixture (one solid and one liquid) by
	chemical method. (any three)
	Rajarshi Shahu Mahavidyalaya,

3 III) Preparations (One Stage) Any Three

- 1. Preparation of Cinnamic acid by Perkin's reaction.
- 2. Aromatic electrophilic substitution.
- i.Synthesis of p-Nitroaniline
- ii.Synthesis of p- Bromoanaline
- 3. Aldol condensation dibenzal acetone from Benzaldehyde.
- 4. Sandmeyer Reaction P- Chlorotoulene from p- Toluidine.
- 5. Oxidation adipic acid from Cyclohexanol by Chromic acid.
- 6. Cannizaro Reaction 4-Chlorobenzaldehyde as substrate.
- 7. Preparation of Salicylic acid from Phenol by Reimer-Tiemann reaction.

N.B.: Any Ten Practicals from above.

[Note-1] Preparation should be carried out using 0.02 to 0.05 mol of the starting material.

- 2) Yield, M.P. and TLC of purified product should be recorded.
- 3) Sample of purified product and TLC plate should be submitted for inspection.

Reference:

- 1) Vogel's practical Organic Chemistry
- 2) Comprehensive practical Organic Chemistry A. K. Ahluwalia and Renu Agrawal
- 3) Hand book of Organic Analysis Qualitative and Quantitative H. Clark and Adwar

दिन एक्टानी विस्तर सन्या ११ जानेह काले स्थेति १।

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry

Course Type: MMC-III

Course Title: Physical Chemistry

Course Code: 601CHE1103

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

LO 1.To understands the quantum Chemistry, Postulates of quantum mechanics, approximate methods.

LO 2 .To study concepts of laws of thermodynamics – G, H, A, S etc, concept of activity & activity coefficients.

LO 3.To understand the concepts of Statistical Thermodynamics, Phase rule

LO 4. Ionic strength, Electrical double layer, Tafel equations etc.

Course Outcomes:

After completion of course the student will be able to-

CO1Understand quantum Chemistry, Postulates of quantum mechanics, the
Perturbation theory

शिव छत्रपते

- CO 2. Know laws of thermodynamics, Partial molar properties, Raoult's law
- CO 3. Understand Partition functions, recapitulation of phase rule and terms involved in it and concepts of Electrochemistry.

Unit No.	Title of Unit & Contents	Hrs.
I	Unit - I Quantum Chemistry	14
	1. The failure of Classical Mechanics, Origin of Quantum mechanics	
	2 The Postulates of quantum mechanics.	
	3 Schrodinger equations in Laplacian and Hamiltonian form. Discussion	
	of solutions of the Schrodinger equation to (derivations).	
	4. Particle in one dimensional box	
	5. Particle in three dimensional box.	
	6. Harmonic Oscillator	
	7. Rigid rotator	
	8. Hydrogen Atom	
	9. Orthogonality and Normalization of wave functions	

Unit No.	Title of Unit & Contents	Hrs.
	10. Operators and related theorems – Algebra of Operators, Commutator,	
	linear operators, Hamiltonian operators, hermitian operators, Ladder	
	operators.	
	11. Approximate Methods –(Any One)	
	a) Perturbation theory (first order and non degenrate)	
	b)Variation Method	
	Numerical Problems on –	
	a. Particle in 1D – box, 3D-box (degeneracy)	
	b. Orthogonality & Normalizati <mark>on</mark>	
	c. Operators.	
	d. Angular momentum-Eigen values and Eigen function	
	Unit Outcomes:	
	UO 1.Distinguish between Classical mechanics & Quantom mechanics	
	UO 2 Solve the Schrödinger equation for different model systems.	
	UO 3. Understand the commutative property and commutation relations	
	of operators.	
	UO 4 .Understand the Approximation methods such as perturbation	
	method and variation method.	
II	Classical thermodynamics	11
	1. Brief resume of concepts of laws of thermodynamics – G, H, A, S etc	
	2. Partial molar properties – Partial Molar volume, partial molar heat	
	content, partial molar free energy. (Chemical potential), significances,	
	Gibbs-Duh <mark>em equ</mark> ation.	
	3. Concept of fugacity – determination from equation of state, Duhem –	
	Margules equation.	
	4. Concept of activity & activity coefficient, any one method of	
	determination.	
	5. Maxwell's thermodynamic relations.	
	6. Ideal and non ideal solutions (Raoults law), Excess functions for non-	
	ideal solutions.	
	Unit Outcome –	
	1. Understand concepts of laws of thermodynamics.	
	•	
	2. Familarize partial Molar Properties & Roult's Law.	

Unit No.	Title of Unit & Contents	Hrs.
	3.1 Statistical Thermodynamics:	
	1 .Introduction, Concept of distribution, thermodynamic probability,	
	Ensemble and its types.	
	2. Partition functions – Translational, rotational, vibrational and	
	electronic partition functions, calculation of thermodynamic properties	
	in terms of partition functions, applications of partition functions.	
	3. M-B, F-D and B-E statistics, Differences between them.	
	3.2 Phase Rule :	
	1. Recapitulation of phase rule and terms involved in it, Three component	
	system: representation of te <mark>rnary syste</mark> ms. Partially miscible three	
	liquid systems:-	
	2. System composed of three liquid components, one partially miscible	
	pairs, two partially miscible a <mark>nd three partially mi</mark> scible pairs.	
	3. System composed of two solid and a liquid components:- formation of	
	eutectic systems, crystallization of pure components only, formation	
	of binary compoun <mark>ds, o</mark> ne d <mark>ouble salt formation</mark>	
	Unit Outcomes:	
	UO 1.Understand Partition functions, recapitulation of phase rule.	
	UO2. Explains the basic definitions and terms in a phase diagram Defines	
	phase, equilibrium, component, degree of freedom and phase rule	
	concepts.	
IV	Electrochemistry	07
	1. Ionic strength (problems)	
	2. Debye – Huckels limiting law (problems)	
	3. Electrical double layer – Theore is of Helmholtz, Gouy – Chapman &	
	stern.	
	4. Debye – Falkenhagen effect & wien effect.	
	5. Over potential & its types.	
	6. Exchage current density, derivation of Butler – Volmer equation, Tafel	
	equations & Tafel plot.	
	Unit Outcomes:	
	UO 1. Solve the Problems on Ionic strength & Mean activity Coefficient.	
	UO 2.Understand the Concept of Electrochemistry.	

Learning Resources:

- 1. Physical Chemistry -P.W. Atkins, ELBS.
- 2. Introduction to Quantum Chemistry -A.K. Chandra, Tata McGraw Hill.
- 3. Quantum Chemistry, By: N.Levine, Prentice Hall of India (p) Ltd. New Delhi (1994).
- 4. Introductory Quantum Chemistry, Fourth Edition, By: A. K. Chandra: Tata McGrawHill Publishing Company Ltd., New Delhi (1994.
- 5. Chemical Kinetics -K.J. Laidler, McGraw Hill.
- 6. Kinetics and Mechanism of Chemical Transformations -J. Rajaraman and J. Kuriacose, Macmillan.
- 7. Micelles, Theoretical and Applied Aspects V. Moroi, Plenum
- 8. Modern Electrochemistry Vol. I & II, J.O.M. Bockris & A.K.N. Reddy, Plenum

Raj

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry

Course Type: MMC-III

Course Title: Lab. Course-III (Based on MMC-III)

Course Code: 601CHE1106

Credits: 01 Max. Marks: 50 Lectures: 30 Hrs.

Learning Objectives:

LO1. To determine the strength, concentrations, hydrolysis constant of solutions by conductometer

LO2 .To determine pH, molar refractivity, freezing point by instrumental methods

LO3. To determine solubility, ionic strength, rate constant by non instrumental methods

Course Outcomes:

After completion of course the student will be able to-

CO1 .They can perform experiments using conductometer, PH-meter, refractometer.

CO2. They can determine solubility, ionic strength, rate constant by non instrumental method.

NB:

- 1 Performance of eight experiments is expected
- 2 At least one experiment on each instrument should be done.
- 3 Student should prepare the required solutions

I	Practicals	30 Hrs
	CONDUCTOMETER:	
	1. To estimate the concentrations of sulphuric acid, acetic acid and copper	
	sulphate in given solution.	
	2. To determine solubility product and thermodynamic properties (ΔG , ΔH ,	
	Δ S) of sparingly soluble salts.	
	3. To determine the relative strength of chloroacetic acid and acetic acid.	
	4. To determine the hydrolysis constant of Aniline hydrochloride	
	5.To investigate basic hydrolysis of ethyl acetate at four different	
	temperatures and to find out the energy of activation.	

	II METED.
•	H-METER:
	. To determine Hammet constant of given substituted benzoic acid.
	o determine pH values of various mixtures of sodium acetate and acetic acid
i	n aqueous solution and hence to find out dissociation constant of acid.
R	EFRACTOMETER
1.	To determine the molar refractivity of methyl acetate, ethyl acetate, n-hexane
	and carbon tetra chloride and to calculate refractive equivalence of C, H and
	Cl atom.
2.	To study the variation of refractive index with composition of mixture of
	CCl ₄ and ethyl acetate.
3.	Determination of molecular radius of molecule of organic compound.
F	REZING POINT APPARATU <mark>S</mark>
1.	Determination of molecular weight of compound by freezing point method.
	SECTION B (NON-INSTRUMENTAL)
1.	To determine partial molar volume of ethanol and water mixture at given
	composition.
2.	To determine solubility of benzoic acid at different temperature and hence
	to determine it's heat of solution.
3.	To determine effect of ionic strength on rate constant of reaction between
	potassium.
4.	To investigate the autocatalytic reaction between KMnO and oxalic acid
	and to find energy of activation.
5.	To determine the rate constant of hydrolysis of methyl acetate catalysed by
	HCl per sulphate and potassium iodide.
5.	To investigate the solubility of three component system and hence tie line
•	on binodal curve.
7.	To study the variation of viscosity with composition of mixture of
1.	Ethanol-water, ii) methanol-ethylidene chloride
2.	Nitric acid-Chloroform and determine whether or not there is compound
	formation between two liquids.
	Tornation octived two inquies.

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

References

- 1. Findlay's (1985): Practical Physical Chemistry, Revised and edited by B.P. Levitt 9 th edition, Longman, London.
- 2. Chatwal, G.R. and Anand, S.K (2000): Instrumental Methods of Chemical Analysis, Himalaya Publishing House, Delhi
- 3. Yadav, J. B (2005): Advanced Practical Physical Chemistry, 22 ndedition, Goel publishing House, Krishna Prakashan Media Ltd.
- 4. Venkatesan, V, Veeraswamy, R and Kulandaivelu, A.R (1997): Basic Principles of Practical Chemistry", 2nd edition, Sultan Chand and Sons Publication, New Delhi.

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry

Course Type: MEC-I

Course Title: Physical Methods in Chemistry

Course Code: 601CHE1201

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

LO 1. To give the knowledge regarding the data handling and basic concepts in analytical Chemistry

LO 2. To familiarize students with chromatographic separation techniques

LO 3. To give the students brief knowledge regarding forensic science

Course Outcomes:

- CO 1. Students can analyse data statistically and understood the basic terms in analytical Chemistry
- CO 2. Students became familiar with principles and techniques of chromatography
- CO 3. Students received basic knowledge regarding forensic science.

Unit No.	Title of Unit & Contents	Hrs.
I	Basic Concepts of Analytical Chemistry and Chemometrics:	12
	1.1 Basic Concepts of Analytical Chemistry	
	i. The nature of analytical Chemistry, the role of analytical	
	Chemistry, qualitative and quantitative analytical methods,	
	ii. A typical quantitative analysis- sampling and treatment of	
	samples, validation of a method.	
	1.2 Chemometrics	
	i. Concentration of solution based on volume & mass unit. Mole	
	concept and concentration unit.	
	ii. Calculations of ppm, ppb, ppt and dilutions of solution,	
	concept of milimole	
	iii. Stoichiometry of chemical reactions concept of kgmol,	
	limiting and excess reactant, theoretical & practical yield.	
	iv. Solubility & solubility equilibria, effect of presence of common	
	ion.	
	v. Calculation of pH of acids, bases & acidic – basic buffers	

Unit No.	Title of Unit & Contents	Hrs.
	vi. Numericals.	
	Unit Outcomes:	
	UO 1. Analyse the data statistically and understood the basic	
	terms in analytical Chemistry	
	UO 2. Determine the Stoichiometry of chemical reactions.	
П	Errors & Statistical treatment of Analytical Data	12
	2.1 Errors: Determinant, Constant and Indeterminate errors,	
	Accuracy and Precision.	
	2.2 Distribution of random errors, Average deviation & standard	
	deviation, variance and confidence limit, significant figures &	
	computation rules, least square methods (Q, t, χ^2 , F tests).	
	Unit Outcomes:	
	UO 1. Define the Errors, Accuracy and Precision.	
	UO 2. Calculate the Average deviation & standard deviation.	
III	Separation Techniques :	15
	3.1 Chromatography	
	Introduction, classification, basic principle and theory of chromatographic	
	techniques.	
	i. Thin Layer Chromatography-Basic principle, experimental	
	techniques, solvent system, plate development, detection of	
	component, evaluation of chromatogram by different method,	
	application of TLC.	
	ii. Gas Chromatography-Introduction, Techniques-Column	
	efficiency, plate theory, rate theory, Advantages, Gas	
	chromatogram, Instrum <mark>entati</mark> on, Applications.	
	iii. HPLC-Introduction, principle, column efficiency in LC, mobile	
	phase reservoirs, solvent treatment system, pumping system, sample	
	introduction system, types of column, Detectors: EC and diode aray	
	detectors, fluorimetric detectors, applications of HPLC.	
	Unit Outcomes:	
	UO 1. Separate the mixture by using different chromatographic	
	techniques.	
IV	Forensic Analysis	06
	4.1Overview, Destructive and Non-destructive techniques, Data	
	interpretation.	

Unit No.	Title of Unit & Contents	Hrs.
	4.2Blood Analysis: Blood preservation and ageing effects, Analysis of	
	blood components and exogenic substances, blood stain analysis.	
	4.3 DNA Profiling : DNA and its polymorphism, DNA typing	
	procedures-RFLP, PCR, MVR-PCR, Dot-blot, AMP-FLP, STR, other	
	methods, paternity testing, applications.	
	Unit Outcomes:	
	UO 1. Define DNA Profiling.	
	UO2.Analyze Blood Components.	

Learning Resources:

- 1. Instrumental methods of chemical analysis (CBS) H.H. Willard & L.L. Merritk, I.A. Dean.
- 2. Instrumental methods of Analysis Chatval Anand.
- 3. Instrumental methods of chemical analysis H. Kaur.
- 4. Fundamental Analytical Chemistry 8th edition Skooq, west, holler, couch.
- 5. Analytical Chemistry 6th edition L.D. Christain.
- 6. Computational Chemistry A.C Noorris.
- 7. Computer for Chemistry S.K. Pundir & Anshu Bansal.
- 8. Principal of Analytical Chemistry, Douglas & Koog, F.I. Holler & R.crouch 6th Edition, Thomson books / cole 2007.
- 9. H.P.L.C. Analytical Chemistry by open learning 2nd edition sundie lindsory Ed. John Willey & sons, New York 1993.
- 10. Instrumental Methods of Chemical Analysis B.K. Sharma
- 11. Instrumental methods of Chemical Analysis R.D. Braun.
- 12. Basic principles of spectroscopy R Chang, Mc. Graw Hill.

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry

Course Type: MEC I

Course Title: Basic Concepts of Polymer Chemistry

Course Code: 601CHE1202

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

LO 1. The graduate will be able to knowbasics concepts of polymer chemistry.

LO 2. The graduate will also be able to study various mechanisms of polymerisation and learn different techniques of polymerisation.

LO 3. The graduate will also be able to Synthesize & determine various properties.

Course Outcomes:

On completion of this course, the student will be able to:

CO1. To recall the basic concepts and classification of polymers.

CO2. To explain the basic techniques of polymerization.

Unit No.	Title of Unit & Contents	Hrs.
I	Unit I Basic Concepts and Classification of Polymers	10
	Basic concepts - polymer, monomer and polymerization,	
	functionality and reactivity, Classification of polymers based on - source,	
	chemical nature, thermal response, ultimate form and branched/network	
	structures, homopolymer and copolymer (types)	
	Unit Outcomes:	
	UO 1. Define Polymers & Polymerization	
	UO 2. Describe Different Types of Polymers	
II	Mechanisms & Techniques of Polymerizations	15
	Mechanisms of chain and step growth polymerizations, ring opening	
	polymerisation, Miscellaneous polymerisations - electrochemical	
	polymerisation, metathesis polymerisation, group transfer polymerization	
	Bulk polymerisation, solution polymerisation, suspension polymerisation,	
	emulsion polymerisation, melt polycondensation, solution	
	polycondensation, and interfacial polycondensation, solid and gas phase	
	polymerisation	
	Unit Outcomes:	
	UO 1. Discuss Different Techniques of Polymerization.	

Unit No.	Title of Unit & Contents	Hrs.
	UO 2. Describe Mechanism of Different Polymerization.	
III	Molecular Weights and Nomenclature of Polymers	10
	Degree of polymerisation, various average molecular weights (Mn, Mw,	
	Mv and Mz) and molecular weight distribution (MWD),nomenclature of	
	polymers based on - source, structure, IUPAC	
	Unit Outcomes:	
	UO 1. Determination of Molecular Weight of polyper.	
	UO 2. Nomenclature of polymers	
IV	Commercial Polymers:	10
	Manufacture, properties and applications of Polyethylene Polypropylene,	
	polystyrene, polymethylmethacrylate, Polyvinylchloride, polybutadiene	
	and polyacetals, PET, Nylon-6,6.	
	Unit Outcomes:	
	UO 1. Describe Properties Polym <mark>er Defferent types of</mark> polymer.	
	UO 2. Explain Manuf <mark>actu</mark> ring of Polypropylene, polystyrene,	
	polymethylmet <mark>hacry</mark> late, etc.	

Learning Resources:

- 1. V. R. Gowarikar, N. V. Viswanathan and Jayadev Sreedhar, Polymer Science, New Age International (P) Limited, New Delhi, 1988.
- 2. M. P. Stevens, Polymer Chemistry an Introduction, 2nd Edition, Oxford University Press, New York, 1999.
- 3. J. R. Fried, Polymer Science and Technology, Eastern Economic Edition, Printice Hall of India, New Delhi, 2000.
- 4. C. E. Carraher Jr Introduction to Polymer Chemistry, Special Indian Edition, Taylor and Francis, New Delhi, First reprint, 2010.
- 5. P. Ghosh, Polymer Science and Technology, Plastics, Rubbers, Blends and Composites, , 3rd Edition, Tata McGraw Hill Education Private Ltd., New Delhi, 2011.
- 6. F. W. Billmayer, Text Book of Polymer ScienceJohn Wiley and Sons, New Delhi, 1984.
- 7. G. Odian, Principles of Polymerisation, 3rd Edition, Odian, John Wiley & Sons (Asia) Pvt. Ltd., Singapore, 2002.
- 8. P. Bahadur and N. V. Sastry, Principles of Polymer Science, 2nd Edition, Narosa Publishing House, New Delhi, 2012. Course Outcomes (COs):

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry

Course Type: MEC-I

Course Title: Lab. Course-IV (Based on MEC-I)

Course Code: 601CHE1203

Credits: 01 Max. Marks: 50 Lectures: 30 Hrs.

Learning Objectives:

LO 1. Determination of Strength of acid, base, salt using potentiometer comductometer

LO2. Determination of rate constant by using polarimeter.

Course Outcomes: Determination of

After completion of course the student will be able to-

CO 1. Determine strength of acid, base, salt using potentiometer comductometer

CO 2. Determine rate constant by using polarimeter.

Ι	Practicals	30 Hrs
	Section-A (Intrumental)	
	Conductometry:	
	1 Determination of the strength of strong acid and weak acid from mixture	
	solution conductometrically	
	2 Analysis of aspirin by conductometric method.	
	Potentiometry:	
	1. Determination of the strength of halides in the given mixture using	
	Potentiometry.	
	2. Determine the acid and basic dissociation constant of an amino acid (Glycine)	
	and hence isoelectric point of an acid	
	Polarimetry:	
	1. Determination of rate constant for inversion of cane sugar by polarimetry.	
	2. Study of inversion of cane sugar by enzyme kinetics.	
	3. Determine the percentage of two optically active substances in	
	a mixture polarimetrically	
	Karl Fischer Titration:	
	1. Determination of number of water molecules in given compound by Karl	
	Fischer Titration method	

$Section-B\ (Non-Instrumental)$

Statistical analysis:

- 1. Application of 't' test for experimental data.
- 2. Application of rejection criteria ('Q' test) for experimental data.
- 3. Treatment of analytical data with least square method applied to Beer's law for KMnO $_{\rm 4}$ solutions.

Chemical Kinetics:

- 1. Investigate the reaction between bromic acid and hydroiodic acid.
- 2. To study the kinetics of iodination of acetone.

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry

Course Type: RMC

Course Title: Research Methodology

Course Code: 601CHE1301

Credits: 04 Max. Marks: 100 Lectures: 60 Hrs.

Learning Objectives:

LO1. To enable to student to understand and work methods and concepts related Research.

LO2. To enable the student to develop research proposal and to work with research problem.

LO3. To develop broad comprehension of research area.

Course Outcomes:

After completion of course, the student will be able to-

CO1. Examine the basic aspects of Research methods

CO2. Apply and integrate the basic concepts Collection and analysis of data.

CO3. Know the of report writing and evaluation methods.

CO4. Examine the plagiarism by using various apps.

Unit No.	Title of Unit & Contents	Hrs.
I	Introduction and Methods of Research	15
	1. Meaning of Research, Objectives of Research, Types of Research,	
	2. Research Approaches, Significance of Research, Research Methods Versus	
	Methodology, Research and Scientific Methods,	
	3. Research Processes, Criteria for Good Research	
	4. Research Problem, Selecting the Problem, Necessity of Defining the	
	Problem, Techniques Involved in Defining a Problem	
	Unit Outcome:	
	UO1. Examine the basic aspects of Research methods	
II	Research Design and Sampling	15
	1. Meaning and Need for Research Design, Features of A Good Design.	
	2. Important Concepts Relating to Research Design: Dependent and	
	Independent Variables, Extraneous Variables, Control, Research	
	Hypothesis, Experimental and Non-Experimental Hypothesis -Testing	
	Research, Experimental and Control Group	

	3. Different Research Designs: Research Design in Case of Exploratory	
	Research Studies, Research Design in Case of Hypothesis- Testing	
	Research Studies, Basic Principles of Experimental Designs, Important	
	Experimental Designs	
	4. Sampling Design, Steps in Sample Design, Criteria of Selecting a Sampling	
	Procedure, Characteristics of A Good Sample Design, Different Types of	
	Sample Design	
	Unit Outcome:	
	UO1. Apply and integrate the basic concepts Collection and analysis of data.	
III	Data Collection and Data Processing	15
	1. Measurements in Research, Measurement Scales, Sources of Errors in	
	Measurement.	
	2. Collection of Primary Data: Observation Method, Interview Method,	
	Through Questionnaires, Through Schedules, Difference Between	
	Questionnaire and Schedule	
	3. Collection of Secondary Data, Selection of Appropriate Methods for Data	
	Collection, Case Study Method	
	4. Data Processing, Processing Operations: Editing, Coding, Classification,	
	Tabulation, Graphical Representation, Types of Analysis, Statistical Tools	
	and Techniques Of Data Analysis-Measures Of Central Tendency,	
	Dispersion.	
	Unit Outcome:	
	UO1. Know the of report writing and evaluation methods	
IV	Report Writing and Evaluations	15
	1. Principles of Report Writing and Guide Lines According to Style Manuals.	
	2. Writing and Presentation of Preliminary, Main Body and Reference Section	
	of Report.	
	3. Evaluation of Research Report.	
	4. Methods to Search Required Information Effectively, Reference	
	Management Software Like Zotero/ Mendeley, Software for Paper	
	Formatting Like Latex/ MS Office.	
	5. Software for Detection of Plagiarism.	
	Unit Outcome:	
	UO1. Examine the plagiarism by using various apps.	
•		

Learning Recourses: -

- 1. Bajpai S. R. (1975) Methods of Social Survey and Research, Kitabghar, Kanpur.
- 2. Hans Raj (1988) Theory and Practice in Social Research, Surject Publication, Kolhapur.
- 3. Krishnaswami O. R. (1988) Methodology of Research in Social Science, Himalaya Pub. House.
- 4. Sadhu, Singh, Research Methodology in Social Science Bhandarkar, Research Methodology
- 5. Kothari, C. R. (2005) Quantitative Technique, New Delhi, Vikas Publication House.
- 6. Gautam, N. C. (2004) Development of Research tools, New Delhi, Shree Publishers.
- 7. Gupta, Santosh (2005) Research Methodology and Statistical Techniques, Deep and Deep Publications.
- 8. Chandera A. and Sexena T. P. (2000) Style Manual, New Delhi, Metropolitan Book Comp.
- 9. Shukla, J. J. (1999) Theories of Knowledge, Ahmadabad, Karnavati Publication.
- 10. Bhattacharya, D. K. (2004) Research Methodology, New Delhi, Excel Books.
- 11. Brymann, Alan and Carmer, D. (1995) Qualitative data analysis for social scientist, New York, Routledge Publication.
- 12. Best J. W. and Khan J. V. (2005) Research in Education New Delhi, Prentice Hall India.

Semester - II

शिव छत्रपती शिक्षण संस्था लातूर

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Bu well bur are one of the second of the sec

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry and Analytical Chemistry

Course Type: MMC-IV

Course Title: Inorganic Chemistry-II

Course Code: 601CHE2101

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

LO 4. To understand the role of natural Metalloporphyrins

LO 5. To familiarize with inorganic Raman and ESR Spectroscopy.

LO 6. To understand the chemistry of S and P block elements.

LO 4. To understand Organometallics & Solid state Chemistry.

Course Outcomes:

After completion of course the student will be able to-

- CO 5. Understand the role of natural metalloporphyrins like haemoglobin, myoglobin and chlorophyll.
- CO 6. Familiarize with inorganic Raman and ESR Spectroscopy and their difference.
- CO 7. Understand the detail chemistry of S and P block elements w.r.t. their compounds, their reactions and applications..
- CO 8. Understand the structure and bonding in Organometallics & concept of Solid state Chemistry

Unit No.	Title of Unit & Contents	Hrs.
I	Bio inorganic Chemistry	11
	Biological importance of essential and Non-essential elements.	
	2. Na / K Pump.	
	3. Metalloporphyrins – structure of porphyrin molecule	
	4. Hemoglobin – structure, function of hemoglobin., Bhor effect	
	5 .Myoglobin – structure and function, Difference between hemoglobin	
	and myoglobin Shanu Wahaylo yalaya,	
	6. Chlorophyll – structure and function, photosynthesis PS-I and PS-II	
	7. Cytochrome –structure, its types & functions	
	8. Electron carrier protein in biological system: Iron-suphur protein –	
	Rubredoxin, ferrodoxin	
	Unit Outcomes:	

Unit No.	Title of Unit & Contents	Hrs.
	UO 3. Discuss biological importance of essential and Non-essential	
	elements.	
	UO 4. Define the role of Hemoglobin and Myoglobin.	
II	Inorganic Spectroscopy	11
	IR Spectroscopy	
	Principle, Difference between IR and NMR Spectroscopy, IR spectra of	
	some inorganic compounds	
	Raman Spectroscopy	
	Principle, difference between IR and Raman spectroscopy, Raman	
	spectra of inorganic compound.	
	ESR Spectroscopy	
	Comparison between ESR and NMR spectroscopy types of substances	
	with unpaired electron, theory of transition metal ion as ESR indicator	
	ion.	
	Mossbauer Spectros <mark>co</mark> py	
	Theory, Doppler Effect, Mossbauer spectra some inorganic compounds	
	Unit Outcome:	
	UO 3. Differentiate between IR and NMR spectroscopy.	
	UO 4. Define theories of ESR and Mossbauer Spectroscopy.	
III	Chemistry of Main group elements:	12
	1. Boron Group: Boron Hydrides, classification of boranes, preparation,	
	structure and Bonding with reference to LUMO, HOMO,	
	interconversion of lower and higher boranes, Metalloboranes,	
	Carboranes	
	2. Carbon Group: C60 and its compounds (fullerenes), Intercalation	
	compounds of Graphite, Graphene, Silicates	
	3. Nitrogen Group: Nitrogen activation, Oxidation states of nitrogen,	
	phosphorus compounds	
	4. Oxygen Group: Oxyacids, and oxoanions of sulphur & nitrogen,	
	comparison of strength of oxyacids	
	5. Halogen Group: Interhalogens, pseudohalogen, Synthesis, Structure,	
	Properties and Application, Bonding	
	Unit Outcomes:	
	UO 3. Discuss the Chemistry of Main group elements.	
	UO 4. Draw & explain allotropes of Carbon.	

Unit No.	Title of Unit & Contents	Hrs.
IV	Organometallics & Solid state Chemistry:	11
	Organometallics:	
	1.Introduction – stable electronic configuration, 18 – electron compound,	
	electron count preference, electron counting by oxidation states and neutral	
	method	
	2. Structure and bonding of ligands carbon monoxide,	
	Cyclopentadiene, cycloheptatriene and carbine	
	Solid state Chemistry:	
	1.Electronic structure of solids a <mark>nd ban</mark> d theory, Limiting radius ratio,	
	coordination number and their relationship	
	2. Stoichiometric defects – Intro <mark>duction, sch</mark> ottky defect, frenkel defects.	
	3. Non – stoichiometric defects – metal excess defect, F-centre Interstitial	
	ions and electrons, metal deficiency defect. Positive absent, extra	
	interstitial negative ions.	
	4. Semiconductors – Introduction, N and P types of semiconductors	
	Unit Outcomes:	
	UO 3. Calculate 18 electron compounds	
	UO 4. Differentiate between Stoichiometric defects and . Non –	
	stoichiometric defects	

Learning Resources:

- 1. Inorganic Chemistry by Shriver and Atkins (Ox ford)
- 2. Concise Inorganic Chemistry by J.D. Lee (Chapman & Hall)
- 3. Inorganic Chemistry: Principle, Structure and reactivity by Huheey, Keiter Medhi (Pearson Education)
- 4. Inorganic Chemistry by Catherine Housecraft.
- 5. Inorganic Chemistry by messler and tarr (pearson publishers)
- 6. Organ metallic Chemistry: A unified Approach by R.C. Mehrotra and A. Singh.
- 7. Principle of Bio inorganic Chemistry: by S.J. Lippard and J.M. Berg.
- 8. Bioinorganic Chemistry: Inorganic elements in Chemistry of life by W.Kaim and B. Schwederski.
- 9. Bioinorganic Chemistry by Robert Hay.
- 10. Bioinorganic Chemistry by M.N. Hughes.
- 11. Bioinorganic Chemistry by R.J.P. wittams.
- 12. Bioinorganic Chemistry by Bertini, Gray, Lippard and Valentine.

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry and Analytical Chemistry

Course Type: MMC-IV

Course Title: Lab. Course-V (Based on MMC-IV)

Course Code: 601CHE2104

Credits: 01 Max. Marks: 50 Lectures: 30 Hrs.

Learning Objectives:

LO 1. To perform semi micro qualitative inorganic analysis of three acidic and three basic and synthesis of inorganic complexes.

Course Outcomes:

After completion of course the student will be able to-

CO 3. They can identify different acidic and basic radicals by qualitative analysis and prepare different inorganic complexes.

I	Practicals	30 Hrs
	Semi micro qualitative inorganic analysis (At least 08 mixtures):	
	1 Three acidic and three basic radicals including one rare earth metal	
	ions and acidic radicals.	
	2 Synthesis of complex: Potassium Trioxalato Ferrate, Potassium	
	Trioxalato Aluminate, Dimethylglyoxime Nickel(II), Tris(acetyl	
	acetonate)Manganese(III), etc	

विन करनी विभाग संख्या सम्बद्धाः स्वापास्य ॥ १९५०

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry and Analytical Chemistry

Course Type: MMC-V

Course Title: Organic Chemistry-II

Course Code: 601CHE2102

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives

LO 1. To introduce the types of free radical reactions.

LO 2. To confront students with E², E¹ and E¹CB mechanisms.

LO 3. To clarify the concept of pericyclic reactions and their types.

LO 4. To give perceptions about the photochemistry and their terms.

Course outcomes:

After completion of course the student will be able to-

- CO 1. Became familiar with different types of free radical reactions and their applications.
- CO2. Able to outline the mechanism of different E², E¹ and E¹CB reactions and understandtheir applications.
- CO 3. Know the concepts of electrocyclic reactions, cycloaddition reactions, Sigmatropic rearrangements etc.
- CO 4. Became familiar with photochemical theory, photo reduction reactions, Photo –friesreactions etc.

Unit No.	Title of Unit & Contents	Hrs.
I	Free radical reactions	11
	1.Introduction	
	2. Types of free radicals:	
	a. Stable free radicals	
	b. Short lived free radicals	
	3. Stability of free radicals.	
	4. Configuration of free radicals.	
	5. Mechanism of free radical reactions and applications of free radical	
	reactions	
	Unit Outcome:	

Unit No.	Title of Unit & Contents	Hrs.
	UO 1. Identify free radical reaction	
	UO 2. Write mechanism of free radical reaction	
II	Elimination Reaction:	12
	1. The E ² , E ¹ and E ¹ CB mechanisms and their spectrum	
	2. Orientation of the double bond.	
	3. Reactivity: Effects of substrate structures, attacking base, the	
	leaving group and the medium.	
	4. Mechanism and orientation in pyrolytic elimination.	
	Unit Outcome:	
	UO 1. Elaborate the mechanism of elimination reactions.	
	UO 2. Predict the effect of structure & leaving groups.	
III	Pericyclic Reactions:	11
	Molecular orbital symmetry.	
	2. Frontier orbitals of ethylene, 1,3-butadiene,1,3,5-haxatriene and allyl	
	system.	
	3. Classification of pericyclic reactions.	
	4. Woodward Hoffmann correlation diagrams: FMO and PMO approach.	
	A. Electrocyclic Reactions:	
	1 Conrotatory & disrotatory motions in ring opening and ring closing	
	reactions	
	2 Ring opening and ring closing reactions in which polyenes having 4n,	
	4n+2 electron systems.	
	B. Cycloaddition Reactions:	
	1 [2+2] Cycloaddition reactions.	
	2 [4+2] Cycloaddition reactions	
	3 1,3-dipolar cycloadditions	
	4 Cheleotropic reactions	
	C. Sigmatropic rearrangements	
	1 Suprafacial and antarafacial shifts of H.	
	2 Sigmatropic shifts involving carbon moieties, 3,3 and 5,5-	
	Sigmatropic rearrangements.	
	3 Claisen, Cope and Aza–Cope rearrangement	

Unit No.	Title of Unit & Contents	Hrs.
	Unit Outcomes:	
	UO 1. Sketch Woodward Hoffmann correlation diagrams.	
	UO 2. Explain the Cycloaddition Reactions, Sigmatropic	
	rearrangements	
IV	Photochemistry:	11
	1. Principles – Photochemical theory.	
	2. Electronic excitation, singlet and triplet states.	
	3. Jablonski diagram, Energy transfer and quantum efficiency.	
	4. Photochemistry of carbonyl compound:	
	Photoreduction	
	Norrish type – I & II	
	Paterno- Buchi reaction	
	5. Photochemistry of alpha, beta-unsaturated ketones.	
	6. Photochemistry of olefins: cis – trans isomerism.	
	7. Photo–Fries reac <mark>tion</mark> of a <mark>nilides, Barton reaction</mark> and nπ-pπ	
	rearrangements.	
	Unit Outcomes:	
	UO 1. Explain photochemical reactions	
	UO 2. Familarize with photo reduction reactions, Photo –friesreactions	

Learning Resources:

- 1. Advanced Organic Chemistry-Reaction Mechanism and structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3 . A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman.
- 4 . Structure and Mechanism in Organic Chemistry, C.K. Ingold, Cornell University Press.
- 5. Organic Chemistry, R.T. Morrison Boyd, Prentice-Hall.
- 6. Modern Organic Reactions, H.O. House, Benjamin.
- 7 . Principles of Organic Synthesis, R.O.C. Norman and J.M. Coxon, Blackie Academic and professional.
- 8. Pericyclic Reactions, S.M. Mukharji, Macmillan, India.
- 9. Reaction Mechanism in Organic Chemistry, S.M. Mukherji and S.P. Singh, Macmillan.
- 10. Photochemistry and Pericyclic Reactions, Jagdamba Singh and Jaya Singh.

See section of the se

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry and Analytical Chemistry

Course Type: MMC-V

Course Title: Lab Course –VI (Based on MMC-V)

Course Code: 601CHE2105

Credits: 01 Max. Marks: 50 Hours: 30

Learning Objectives

- LO 4. Studying experimental process of separation of the given organic binary mixture by physical method.
- LO 5. Understanding the organic synthesis by single stage preparation of organic compounds.
- LO 6. Studying experimental techniques such as simple distillation and thin layer chromatography for the purification and analysis of given organic compounds.

Course outcomes

After completion of course the student will be able to

- CO 1. Separate the given organic binary mixture by physical method.
- CO 2. Synthesize organic compounds by single stage preparation method.
- CO 3. Carry out various techniques for the purification and analysis of given organic compounds.

Practical No.	Practical
1	1. Demonstration:
	a) Steam distillation
	b) Column chromatography
	2. Qualitative analysis:
	Separation, Purification, Sample submission and Identification of compounds of
	binary mixture (Solids) by physical (Ether extraction) method (Any four)
2	3. Preparations (double stage) (any three)
	a) Phthalic acid phthalic anhydride anthranilic acid
	b) Acetophenone oxime acetanilide
	c) Chlorobenzene2,4 –dinitro chlobenzene2,4-
	dinitroaniline
	d) Acetanilidep-bromoacetanilidep-bromoaniline
	e) Benzoin benzylbenzilic acid

N.B.: Any Ten Practicals from above.

Note: 1) Preparation should be carried out using 0.02 to 0.05 mol of the starting material.

- 2) Yield, M.P. and TLC of purified product should be recorded.
- 3) Sample of purified product and TLC plate should be submitted for inspection.

Reference:

- 1) Vogel's practical Organic Chemistry
- 2) Comprehensive practical Organic Chemistry A. K. Ahluwalia and Renu Agrawal
- 3) Hand book of Organic Analysis Qualitative and Quantitative H. Clark and AdwardArnold.

Set word Bayer alon ong: Handy modiful Essiruat - 2900

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry and Analytical Chemistry

Course Type: MMC-VI

Course Title: Physical Chemistry-II

Course Code: 601CHE2103

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

LO 1. To understand the concept of Chemical Kinetics and reaction dynamics

LO 2. To know about surface tension, Gibbs adsorption isotherm etc.

LO 3. To gain the knowledge of micelles & macromolecules.

LO 4. To familiarize students with thermodynamic and kinetic requirements of a reactions.

Course Outcomes:

After completion of course the student will be able to

- CO 1. They can understand the concept of Chemical Kinetics and reaction dynamics like ionic reactions, steady state approximation etc.
- CO 2. Students know about surface tension, Gibbs adsorption isotherm, BET adsorptionisotherm.
- CO 3. They gain the knowledge of micelles, CMC, macromolecules and difference betweenpolymers and macromolecules.
- CO 4. They became familiarize with thermodynamic and kinetic requirements of a reactions.

Unit No.	Title of Unit & Contents	Hrs.
I	Unit - I Chemical Kinetics and reaction dynamics	14
	1. Recapitulation – Zero, first, second, third, fourth, order rate equation,	
	molecularity & order methods of determining order of reaction, fractional	
	order reactions.	
	2 .Theories of reaction rates – collision theory, TST and Lindemann	
	theory .(in detail)	
	3 .Oscillatory reactions (B-Z reaction).	
	4. Ionic reactions – Kinetic Salt effects.	
	5. Enzyme catalysis: - Michaelis – Menten mechanism, limiting rate,	
	lineweaver-burkand Eadie plots .	
	6. Numaricals.	
	7. Steady state approximation – Study of mechanism of reaction using	

Unit No.	Title of Unit & Contents	Hrs.
	chemicalkinetics, problems.	
	8. Kinetics of free radical and condensation polymerization.	
	Unit Outcomes:	
	UO 1. Understand the concept of Chemical Kinetics and reaction	
	dynamics like ionicreactions.	
	UO 2. Solve the Problems by using steady state approximation.	
II	Surface Chemistry	08
	1. Surface tension, capillary action, pressure difference across curved	
	surfaces (Laplaceequation).	
	2. Gibbs adsorption isotherm & BET adsorption isotherm, estimation	
	of surface areafrom BET isotherm.	
	3. Kelvin equation for vapour pressure of droplets.	
	Unit Outcome –	
	1. Predict the surface tension	
	2. Understand the Gibbs adsorption isotherm, BET adsorptionisotherm.	
III	Micelles & Macromolecules	08
	3.1 Micelles:	
	1 . Surface active agents, classification.	
	2. Micelles, process of Micellisation, CMC, factors affecting CMC,	
	thermodynamicsof micellisation, cleansing action of soap & detergent.	
	3.2 Macromolecules:	
	1. Definition, examples	
	2. Difference between polymers and macromolecules.	
	3. Types of polymers – electrically conducting, fire resistant, liquid	
	crystal & stereoregular polymers.	
	4. Molecular Mass (MN, Mw & Mz) Determination of Molecular	
	Mass by -Viscometry, Osmometry & Light Scattering Method.	
	5. Numaricals.	
	Unit Outcomes:	
	UO 1. Identify the difference between polymers and macromolecules.	
	UO 2. Calculate the molar mass of polymers.	
IV	Molecular Symmetry and Group Theory	15

Unit No.	Title of Unit & Contents	Hrs.						
	1. Symmetry criterion of optical activity, symmetry restrictions on dipole							
	moment. A systematic procedure for symmetry classification of							
	molecules.							
	2. Concepts of Groups, Sub-groups, Classes of Symmetry operations,							
	Group Multiplication Tables. Abelian and non-Abelian point groups.							
	3. Representation of Groups: Matrix representation of symmetry							
	operations, reducible and irreducible representations. The Great							
	Orthogonality Theorem and its application in construction of character							
	tables for point groups C ₂ v, C ₃ v and D ₂ h, structure of character							
	tables.							
	4. Applications of Group Theory.							
	a. Determination of symmetry species for translations and rotations.							
	b. Mulliken's notations for irreducible representations.							
	c. Reduction of reducible representations using reduction formula.							
	d. Group-subgroup rel <mark>atio</mark> nships.							
	Unit Outcomes:							
	UO 1. Predict the point groups of molecule.							
	UO 2.Determine the Translational, Vibration and Rotational modes.							

Learning Resources:

- 1. Physical Chemistry -P.W. Atkins, ELBS.
- 2. Introduction to Quantum Chemistry -A.K.Chandra, Tata McGraw Hill.
- 3. Quantum Chemistry Ira N.Levine, Prentice Hall.
- 4. Coulson's Valence -R. McWeeny ELBS.
- 5. Chemical Kinetics -K.J.Laidler, McGraw Hill.
- 6. Kinetics and Mechanism of Chemical Transformations -J.Rajaraman and
 - J. Kuriacose, Macmillan.
- 7. Micelles, Theoretical and Applied Aspects V. Moroi, Plenum
- 8. Modern Electrochemistry Vol.I & II, J.O.M. Bockris & A.K.N. Reddy, Plenum
- 9. Introduction to Polymer Science V.R.Gowarikar,
 - N,V.Vishwanathan & J.Sridhar, Wiley Eastern.
- 10. Advanced physical chemistry J.N. Gurtu & A. Gurtu, A Pragati.

हिंग करने हिंदर संस्थ । स सार्थ्य करोड़ि स रुक्षापना – १९७०

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry and Analytical Chemistry

Course Type: MMC-VI

Course Title: Lab. Course-VII (Based on MMC-VI)

Course Code: 601CHE2106

Credits: 01 Max. Marks: 50 Lectures: 30 Hrs.

Learning Objectives:

LO1. To determine equilibrium quotient, concentration of in by colorimeter.

LO 2. To determine pK_1 , pK_2 values, oxidation state of metal ion by potentiometer.

LO 3. To find out molecular weight, surface tension, order of reaction.

Course Outcomes:

After completion of course the student will be able to-

CO1. They can determine equilibrium quotient, concentration of in by colorimeter.

CO2. Students can determine PK1 PK1 values, oxidation state of metal ion by potentiometer.

CO3. They can find out molecular weight, surface tension, order of reaction, by non-instrumental methods

NB

- 1 Performance of eight experiments is expected.
- 2 At least one experiment on each instrument should be done.
- 3 Student should prepare the required solution

I	Practicals	30 Hrs
	Section-A: (Instrumental) Conductometer:	
	1. To determine critical micelle concentration of sodium lauryl sulphate in	
	aqueous solution.	
	Colorimeter:	
	1. To determine equilibrium quotient for formation of mono thiocyanate iron	
	(III)complex.	
	2. To determine Indicator constant of an indicator.	
	3. To determine concentration of Cu (II) iron in given solution titrating with	
	EDTAsolution.	
	Potentiometer:	
	1. To determine PK ₁ PK ₂ values of Phosphoric acid.	

- 2. To determine strength of strong acid and weak acid in given mixture.
- 3. To determine the oxidation state of metal ion by method of concentration.
- 4. Cell without transference.

Polarimeter:

- **1.** To determine the relative strength of two acids.
- 2. To determine the percentage of two optically active substance (d-glucose and d-tartaric acid) in the mixture.

Section B (Non-instrumental)

- 1. To determine molecular weight of high polymer by viscosity measurement.
- 2. To study the effect of surfactant on surface tension of water by using Stalagmometer.
- 3. To determine surface tension of methyl acetate, ethyl acetate and chloroform andhence to calculate atomic parachors of C, H, Cl.
- 4. To determine order of reaction of given reaction kinetics by fractional changemethod.
- 5. To study distribution of benzoic acid between benzene and water at roomtemperature and hence show that benzoic acid dimerises in benzene.

References

- 1. Findlay's (1985): Practical Physical Chemistry, Revised and edited by B.P. Levitt 9 th edition, Longman, London.
- 2. Chatwal, G.R. and Anand, S.K (2000): Instrumental Methods of Chemical Analysis, Himalaya Publishing House, Delhi
- 3. Yadav, J. B (2005): Advanced Practical Physical Chemistry, 22nd edition, Goel publishing House, Krishna Prakashan Media Ltd.
- 4. Venkatesan, V, Veeraswamy, R and Kulandaivelu, A.R (1997): Basic Principles of Practical Chemistry", 2nd edition, Sultan Chand and Sons Publication, New Delhi.

Latur (Autonomous)

Shiv Chhatrapati Shikshan

Sanstha's **Rajarshi Shahu**

Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry and Analytical

Chemistry Course Type: MEC-II Course Title: Physical Methods in

Chemistry-II Course Code: 601CHE2201

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

- LO 1. To familiarize students with electrochemical methods of analysis.
- LO 2. To confront students with spectroscopic methods of analysis.
- LO 3. To describe students about principle and techniques of thermal methods.
- LO 4. To confront students with principle and techniques of X-ray diffraction (XRD).

Course Outcomes:

- CO 1. Student will become familiarize with principles of polarography & voltametry
- CO 2. Students will receive knowledge about principle and techniques of atomic absorption spectroscopy & flame photometry.
- CO 3. Students will receive knowledge about principle and techniques of thermal methods o analysis.
 - CO 4. Students will understand principle and techniques of X-ray diffraction (XRD) methods.

Unit No.	Title of Unit & Contents	Hrs.
I	Electroanalytical Techniques:	13
	1.1 Polarog <mark>rap</mark> hy & Vo <mark>ltame</mark> try	
	Principle of polarography, instrument polarographic measurement,	
	DME, polarogram, Half wave potential, currents contributing to	
	polarographic wave, departure of polarographic waves, conditions	
	for performing polarographic determination. Applications of	
	polarography, modified polarographic techniques, Voltammetry, cyclic voltammetry, stripping voltammetry, Hydrodynamic voltammetry, Numerical	
	1.2 Electrogravimetry :	
	Theory, Important terms used in electrogravimetric methods,	
	overpotential, electrogravimetric methods, instrumentation	

Unit No.	Title of Unit & Contents	Hrs.						
	electrolysis using mercury cathode, spontaneous or internal							
	electrolysis, determination of metal by constant current procedure,							
	determination of metal by controlled potential methods,							
	electrography							
	Unit Outcomes:							
	UO 1. Discuss and explain polarographic and voltammetric method							
	of analysis.							
	UO 2. Elaborate principle and techniques of electrogravmetric							
	Methods.							
II	Spectroscopic techniques	10						
	2.1 AAS (Atomic absorption Spectroscopy)							
	Introduction, principle of AAS, absorption of radiant energy by							
	atoms, classification of atomic spectroscopic methods,							
	measurement of atomic absorption, instrumentation, atomic							
	absorption spectrophotometer, detection limit, interferences in AAS							
	applications, some typical determination, difference between AAS							
	& FES, advantages & disadvantages of AAS							
	2.2 Flame photometry (Flame Emission Spectroscopy)							
	Principle, flames & flame temperature, excitation profiles &							
	chemical reaction in flames, spectra of metal in flame,							
	instrumentation, evaluation methods in flame photometry, factors							
	affecting intensity of emitted radiation, interferences in flame							
	photometry, background correction methods, applications, flame							
	emission experiments, limitations numerical, applications.							
	Unit Outcomes:							
	UO 1. Outline and explain principal and instrumentation of AAS.							
	UO 2. Outline and explain principal and instrumentation of FES.							
III	Thermal Methods	10						
	Thermogravimetric analysis (TGA): Introduction,							
	Thermoanalytical methods, Thermogravimetric analysis,							
	instrumentation, modern thermobalances, interfacing TGA to FTIR							
	or MS for EGA, DTGA, factors affecting TGA, simultaneous TG-							
	DTA-MS analysis, Applications of TGA.							

Unit No.	Title of Unit & Contents	Hrs.
	Differential thermal analysis (DTA) Introduction, theory,	
	differential scanning calorimetry, instrumentation for DTA, heat	
	flux DSC, simultaneous DTA & TGA curves, factors affecting	
	DTA and DSC, Applications.	
	Unit Outcomes:	
	UO 1. Discuss the principle working and instrumentation of	
	thermal methods of analysis.	
	UO 2. Interpret thermographs	
IV	Diffraction Methods:	12
	X-ray diffraction (XRD):	
	Bragg condition, Millers indices, Laue method, Powder XRD	
	Bragg method, Debye–Scherrer method of X-ray structural analysis	
	of crystals, index reflections, identification of unit cells from	
	systematic absences in the diffraction pattern, structure of simple	
	lattices and X-ray intensities, structure factor and its relation to	
	intensity of electron density.	
	Unit Outcomes:	
	UO 1. Explain various diffraction methods of analysis	
	UO2.Draw various lattice planes and explain them with studied	
	laws	

Learning Resources:

- 1. Instrumental methods of chemical analysis (CBS) H.H. Willard & L.L. Merritk, I.A. Dean.
- 2. Instrumental methods of Analysis Chatwal Anand.
- 3. Instrumental methods of chemical analysis H. Kaur.
- 4. Fundamental Analytical Chemistry 8th edition Skoog, west, holler, couch.
- 5. Analytical Chemistry 6th edition L.D. Christain.
- 6. Principal of Analytical Chemistry, Douglas & Koog, F.I. Holler & R.crouch 6th Edition, Thomson books/cole 2007.
- 7. Instrumental Methods of Chemical Analysis B.K. Sharma
- 8. Instrumental methods of Chemical Analysis R.D. Braun.
- 9. Basic principles of spectroscopy R Chang, Mc. Graw Hill.

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry and Analytical Chemistry

Course Type: MEC-II

Course Title: Molecular Spectroscopy & Computer Application-II

Course Code: 601CHE2201

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

LO 1. To gain the knowledge regarding the Basic Concepts in Molecular Spectroscopy

LO 2. To familiarize students with, Infrared & Microwave Spectroscopy's

LO 3. To acquaint students with knowledge of Electronic & Raman Spectroscopy

LO 4. To train the students about brief application of computer in chemistry

Course Outcomes:

After completion of this course students will be able to:

- CO 1. Explain Basic Concepts in Molecular Spectroscopy
- CO 2. Apply Infrared & Microwave Spectroscopy's
- CO 3. Solve the problems based on Electronic & Raman Spectroscopy
- CO 4. Use the computer to solve the chemistry related problems

Unit No.	Title of Unit & Contents	Hrs.
I	Basic Principles of Spectroscopy	5
	1. Characterization of electromagnetic radiation, quantization of energy.	
	2. Regions of the spectrum, interaction of radiation with molecular	
	systems & types of molecular energies.	
	3. Factors affecting width and intensity of spectral lines, selection rule,	
	general discussion on various molecular excitation processes	
	Unit Outcomes:	
	UO 1. Gain the knowledge regarding the Basic Concepts in Molecular	
	Spectroscopy (Autonomous)	

II	Microwave spectroscopy & Infrared spectroscopy	15						
Unit No.	Title of Unit & Contents	Hrs.						
	1. Microwave spectroscopy							
	Classification of molecules according to their moment of inertia, rigid							
	rotor model, effect of isotopic substitution on the transition frequencies,							
	stark effect, non-rigid rotor, selection rules, mechanism of interaction,							
	spectra of symmetric and asymmetric top molecules, applications of							
	microwave spectroscopy.							
	2. Infrared spectroscopy Review of linear harmonic oscillator,							
	vibrational energies of diatomic molecules, zero-point energy, force							
	constant and band strengths, unharmonicity, Morse potential energy							
	diagram, vibration-rotation spectroscopy, PQR branches, Breakdown of							
	Oppenheimer approximation, vibrations of polyatomic molecules,							
	selection rules, normal modes of vibrations, overtones, hot bands, finger-							
	print region, functional group ide <mark>ntification.</mark>							
	Unit Outcomes:							
	UO 1. To famili <mark>ariz</mark> e stu <mark>dents with, Infrared</mark> & Microwave							
	Spectroscopy							
IV	Raman Spectroscopy & electronic spectroscopy	15						
	1. Raman Spectroscopy							
	Classical and quantum theory, Raman effect, Stokes and anti-stokes lines,							
	pure rotational, vibrational and rotation-vibration Raman spectra,							
	selection rules, mutual exclusion principles, structure determination of di							
	, tri and tetra-atomic molecules from Raman and IR spectra, effect of							
	polarization of light.							
	जिल्लाम जांजशा							
	2. Electronic spectroscopy							
	Atomic transitions, spin orbit interaction, atom in uniform magnetic field,							
	many electron atoms, spectra of alkali/alkaline earth atoms, molecular							
	electronic transition, vibrational coarse structure, intensity/selection rule,							
	Frank-Condon Principles, ground and first excited electronic states of							
	diatomic molecule, dissociation energy and dissociation products,							
	rotational fine structure, Fortrat diagram, pre-dissociation							
	Latur (Autonomous)							

	Unit Outcomes:	
	UO 1. To familiarize learners with electronic and Raman spectroscopy	
IV	Computer Application	10
Unit No.	Title of Unit & Contents	Hrs.
	1 Overview of computer, operating system and programming languages.	
	2 Introduction to chemometric and cheminformatic methods and	
	applications in solving chemical problems.	
	3 Application of ChemDraw & Chemsketch .	
	4 Fragment code, linear notation, SMILES and connection table	
	5 Chemical structure databases.	
	6 Molecular similarity and structural searching.	
	Unit Outcomes:	
	UO 1. Educate students about skills to utilize a computer in Chemistry.	

Shiv Chhatrapati Shikshan

Sanstha's Rajarshi Shahu

Mahavidyalaya, Latur

(Autonomous)

Department of Chemistry and Analytical

Chemistry Course Type: MEC-II

Course Title: Lab. Course-VIII (Based on MMC-II) Course Code: 601CHE2106

Credits: 01 Max. Marks: 50 Lectures: 30 Hrs.

Note:

1. Performance of eight experiments is expected

- 2. At least one experiment on each instrument should be done.
- 3. Students should prepare the required solutions

Course Learning Objective:

- 1. To train students in handling of electroanalytical and spectroscopic techniques.
- 2. To train students in handling of chromatographic techniques
- 3. To train them to analyse the chemical constituents with heterogeneous equillibria.

Course Learning Outcome:

- 1. Students will be able to handle electroanalytical and spectroscopic techniques.
- 2. Students will be able to separate mixture components by chromatographic techniques
- 3. Students will be able to analyse the chemical constituents with heterogeneous equillibria are available.

Section-A (Instrumental)

pH-metry:

- 1. Acid-base titration in non-aqueous media by pH-metry (benzoic acid in ethanol / NaOH).
- 2. Determination pKa of weak acid by pH-metry.
- 3. Determination of degree of dissociation of weak electrolyte and to study the deviation from ideal behavior that occurs with a strong electrolyte.

Colorimetry:

- 1. Verification of Beer's law for a) KMnO₄ and Cu²⁺ ammonia complex solution.
- 2. Determination of empirical formula for the formation of ferric salicylate complex by Job's method.
- 3. Determination of stability constant for the formation of complex between Fe3+ ions and 5-sulphosalicylic acid.

Flame photometry:

1. Estimation of Na⁺ / K⁺ by Flame photometry

Fluorimetry:

1. Determination of analyte in given sample by fluorimetry

Thermal Analysis:

1. Recording and interpretation of Thermogravimetric Curve of the given sample.

X-ray Diffractometer:

1. To record X-ray diffraction pattern of NaCl and its interpretation.

Section-B (Non-Instrumental)

Chromatography:

- 1. Separation of cations and anions by paper chromatography and determination of RF values.
- 2. Determination of Ion-exchange capacity of a cation exchanger.
- 3. Determination of Ion-exchange capacity of an anion exchanger.
- 4. Separation of mixture of amino acids by paper chromatography.

Heterogeneous equilibria:

- 1. Determine the formula of complex form between cupric ion and ammonia by distribution method.
- 2. Investigate the solubility of three component system and hence draw a tie lone on bimodal curve.

Water Analysis:

1. Determination of hardness of water by complexometric titration.

Reference:

- 1) Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
- 2) Analytical Chemistry 6th edition L.D. Christain
- 3) Practical Book of Analytical Chemistry (First Edition), Ms.Pooja R. Popat, Publisher Notion Press
- 4) Systematic Experimental Physical Chemistry, S.W. Rajbhoj and T.K. Chondekar, Anjali Publication (2013).
- 5) Advanced Experimental Chemistry volume I, J.N. Gurtu R. Kapoor, S. Chand and Co. New Delhi
- 6) Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- 7) College Practical Chemistry (Mumbai Univ), D.S. Pimple, H.N. Patel, K.P. Jain, R.S. Yamgar, S. P.

Turakhia, S. R. Puniyani, Himalaya Publishing House

8) Post Graduate Practical Chemistry (MSc I), G.C. WADHAWA, H.N. Patel, K.P. Jain, R.S. Yamgar, S. P.

Turakhia, S. R. Puniyani, SAJID F. SHAIKH, Himalaya Publishing House

- 9) De Anil. K. (2011). Environmental Chemistry- 3rd edition. Wiley Eastern Ltd.
- 10) Jahagirdar D.V. (2003). Experiments in Chemistry. Himalaya Publication
- 11) Homes & Peck. (1983). Analytical Biochemistry. Prentice Hall-3rd edition

Guidelines:

Extra -academic activities

- 1. All extra credits claimed under this heading will require sufficient academic input/
- 2. Maximum 04 extra credits in each academic year will be allotted.
- 3. These extra academic activity credits will not be considered for calculation of SGPA/CGPA but will be indicated on the grade card.

Additional Credits for Online Courses:

- 1. Courses only from SWAYAM and NPTEL platform are eligible for claiming credits.
- 2. Students should get the consent from the concerned subject Teacher/Mentor/Vice Principal and Principal prior to starting of the course.
- 3. Students who complete such online courses for additional credits will be examined/verified by the concerne mentor/internal faculty member before awarding credits.
- 4. Credit allotted to the course by SWAYAM and NPTEL platform will be considered as it is.

Additional Credits for Other Academic Activities:

- 1. One credit for presentation and publication of paper in International/National/State level seminars/workshops.
- 2. One credit for measurable research work undertaken and field trips amounting to 30 hours of recorded work.
- 3. One credit for creating models in sponsored exhibitions/other exhibits, which are approved by the concerned department.

- 4. One credit for any voluntary social service/Nation building exercise which is in collaboration with the outreach center, equivalent to 30 hours
- 5. All these credits must be approved by the College Committee.

Additional Credits for Certificate Courses:

- 1. Students can get additional credits (number of credits will depend on the course duration) from certificate courses offered by the college.
- 2. The student must successfully complete the course. These credits must be approved by the Course Coordinators.
- 3. Students who undertake summer projects/ internships/ training in institutions of repute through a national selection process, will get 2 credits for each such activity. This must be done under the supervision of the concerned faculty/mentor.

Note:

- 1. The respective documents should be submitted within 10 days after completion of Semester End Examination.
- 2. No credits can be granted for organizing or for serving as office bearers/ volunteers for Inter-Class / Associations / Sports / Social Service activities.
- 3. The office bearers and volunteers may be given a letter of appreciation by the respective staff coordinators. Besides, no credits can be claimed for any services/activities conducted or attended within the college.

All claims for the credits by the students should be made and approved by

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

PG First Year

Extra Credit Activities

Sr. No.	Course Title	Credits	Hours	
			T/P	
1	MOOCs	Min. of 02 credits	Min. of 30 Hrs.	
2	Certificate Courses	Min. of 02 credits	Min. of 30 Hrs.	
3	IIT Spoken Tutorial	Min. of 02 credits	Min. of 30 Hrs.	
	Courses			

Guidelines:

Extra -academic activities

- 4. All extra credits claimed under this heading will require sufficient academic input/contribution from the students concerned.
- 5. Maximum 04 extra credits in each academic year will be allotted.
- 6. These extra academic activity credits will not be considered for calculation of SGPA/CGPA but will be indicated on the grade card.

Additional Credits for Online Courses:

- 5. Courses only from SWAYAM and NPTEL platform are eligible for claiming credits.
- 6. Students should get the consent from the concerned subject Teacher/Mentor/Vice Principal and Principal prior to starting of the course.
- 7. Students who complete such online courses for additional credits will be examined/verified by the concerned mentor/internal faculty member before awarding credits.
- 8. Credit allotted to the course by SWAYAM and NPTEL platform will be considered as it is.

Additional Credits for Other Academic Activities:

- 6. One credit for presentation and publication of paper in International/National/State level seminars/workshops.
- 7. One credit for measurable research work undertaken and field trips amounting to 30 hours of recorded work.
- 8. One credit for creating models in sponsored exhibitions/other exhibits, which are approved by the concerned department.
- 9. One credit for any voluntary social service/Nation building exercise which is in collaboration with the outreach center, equivalent to 30 hours
- 10. All these credits must be approved by the College Committee.

Additional Credits for Certificate Courses:

- 4. Students can get additional credits (number of credits will depend on the course duration) from certificate courses offered by the college.
- 5. The student must successfully complete the course. These credits must be approved by the Course Coordinators.
- 6. Students who undertake summer projects/ internships/ training in institutions of repute through a national selection process, will get 2 credits for each such activity. This must be done under the supervision of the concerned faculty/mentor.

Note:

- 4. The respective documents should be submitted within 10 days after completion of Semester End Examination.
- 5. No credits can be granted for organizing or for serving as office bearers/ volunteers for Inter-Class / Associations / Sports / Social Service activities.
- 6. The office bearers and volunteers may be given a letter of appreciation by the respective staff coordinators. Besides, no credits can be claimed for any services/activities conducted or attended within the college.
- 7. All claims for the credits by the students should be made and approved by the mentor in the same academic year of completing the activity.
- 8. Any grievances of denial/rejection of credits should be addressed to Additional Credits Coordinator in the same academic year.
- 9. Students having a shortage of additional credits at the end of the third year can meet the Additional Credits Coordinator, who will provide the right advice on the activities that can help them earn credits required for graduation.

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Examination Framework

Theory:

40% Continuous Assessment Tests (CATs) and 60% Semester End Examination (SEE)

Practical:

50% Continuous Assessment Tests (CATs) and 50% Semester End Examination (SEE)

Course	Marks	CAT & Mid Term Theory					AT ctical	Best Scored CAT & Mid Term	SEE	Total
,			~ . =	3	~ . =		4	_	_	_
1	2	Att.	CAT	Mid	CAT	Att.	CAT	5	6	5 + 6
			I	Term	II					
Research	100	10	10	20	10	-	-	40	60	100
Methodology		9						7		
DSC/DSE	75	05	10	15	10	-		30	45	75
Lab Course	50	/-	-	-	-	05	20	-	25	50
Field Project	100	10	10	20	10	_		40	60	100

Note:

- 1. All Internal Exams are compulsory
- 2. Out of 02 CATs best score will be considered
- 3. Mid Term Exam will be conducted by the Exam Section
- 4. Mid Term Exam is of Objective nature (MCQ)
- 5. Semester End Exam is of descriptive in nature (Long & Short Answer)
- 6. CAT Practical (20 Marks): Lab Journal (Record Book) 10 Marks, Overall Performance 10 Marks.